
Chapter

14 Shortest Paths

Lightning strike, 2009. U.S. government image. NOAA.

Contents

14.1 Single-Source Shortest Paths 399

14.2 Dijkstra’s Algorithm . 400

14.3 The Bellman-Ford Algorithm 407

14.4 Shortest Paths in Directed Acyclic Graphs 410

14.5 All-Pairs Shortest Paths 412

14.6 Exercises . 418

398 Chapter 14. Shortest Paths

In a road network, the interconnection structure of a set of roads is modeled

as a graph whose vertices are intersections and dead ends in the set of roads, and

edges are defined by segments of road that exists between pairs of such vertices. In

such contexts, we often would like to find the shortest path that exists between two

vertices in the road network. For example, such problems arise in GPS mapping

contexts where we are interested in minimizing the driving distance between two

points. Here, it typically would be inappropriate to consider one path shorter than

another simply because it uses a fewer number of edges. Edges in a road network

usually have varying lengths, and it can take longer to traverse some edges than

it does others. Thus, edges in road networks have lengths, which represent some

notion of distance for the edges, such as driving distance or driving time. Therefore,

the length of a path in a road network is the sum of the lengths of the edges in that

path, not the number of edges in the path.

In general, a weighted graph is a graph that has a numeric label, w(e), associ-

ated with each edge, e, called the weight of edge e. Edge weights can be integers,

rational numbers, or real numbers, which represent a concept such as distance,

connection costs, or affinity. We explore in this chapter how to solve shortest path

problems for weighted graphs, so as to solve such problems as finding optimal

driving directions in road networks. We show an example of a weighted graph in

Figure 14.1.

BOS

JFK

MIA

ORD

DFW

SFO

LAX

2704

1846 867

740

1258

1090

802

1464

337

2342

1235

1121

187

Figure 14.1: A weighted graph whose vertices represent major U.S. airports and

whose edge weights represent distances in miles. This graph has a path from JFK

to LAX of total weight 2,777 (going through ORD and DFW). This is the shortest

path in the graph from JFK to LAX.

14.1. Single-Source Shortest Paths 399

14.1 Single-Source Shortest Paths

Let G be a weighted graph. The length (or weight) of a path, P , in G, is the sum

of the weights of the edges of P . That is, if P consists of edges, e0, e1, . . . , ek−1,

then the length of P , denoted w(P), is defined as

w(P) =
k−1
∑

i=0

w(ei).

The distance from a vertex v to a vertex u in G, denoted d(v, u), is the length of a

minimum length path (also called shortest path) from v to u, if such a path exists.

People often use the convention that d(v, u) = +∞ if there is no path at all

from v to u in G. Even if there is a path from v to u in G, the distance from v to u
may not be defined, however, if there is a cycle in G whose total weight is negative.

For example, suppose vertices in G represent cities, and the weights of edges in

G represent how much money it costs to go from one city to another. If someone

were willing to actually pay us to go from, say, JFK to ORD, then the “cost” of the

edge (JFK,ORD) would be negative. If someone else were willing to pay us to go

from ORD to JFK, then there would be a negative-weight cycle in G and distances

would no longer be defined. That is, anyone can now build a path (with cycles) in

G from any city A to another city B that first goes to JFK and then cycles as many

times as he or she likes from JFK to ORD and back, before going on to B. The

existence of such paths allows us to build arbitrarily low negative-cost paths (and

in this case make a fortune in the process). But distances cannot be arbitrarily low

negative numbers. Thus, any time we use edge weights to represent distances, we

must be careful not to introduce any negative-weight cycles.

Suppose we are given a weighted graph G, and we are asked to find a shortest

path from some vertex v to each other vertex in G, viewing the weights on the edges

as distances. In the next few sections, we explore efficient ways of finding all such

single-source shortest paths, if they exist.

The first algorithm we discuss is for the simple, yet common, case when all the

edge weights in G are nonnegative (that is, w(e) ≥ 0 for each edge e of G); hence,

we know in advance that there are no negative-weight cycles in G. Recall that the

special case of computing a shortest path when all weights are 1 was solved with

the BFS traversal algorithm presented in Section 13.3. There is an interesting ap-

proach for solving this single-source shortest problem based on the greedy method

(Chapter 10), which is known as Dijkstra’s algorithm.

The second single-source algorithm we discuss, the Bellman-Ford algorithm,

is for the case where edges can have negative weights, and it does not use a greedy

strategy. The next single-source algorithm we consider also allows for negative-

weight edges, but it is specialized for directed acyclic graphs and it is instead based

on a greedy strategy.

400 Chapter 14. Shortest Paths

14.2 Dijkstra’s Algorithm

A productive approach for applying the greedy method pattern to the single-source

shortest-path problem is to perform a “weighted” breadth-first search starting at v.

In particular, we can use the greedy method to develop an algorithm that iteratively

grows a “cloud” of vertices out of v, with the vertices entering the cloud in order

of their distances from v. Thus, in each iteration, the next vertex chosen is the

vertex outside the cloud that is closest to v. The algorithm terminates when no

more vertices are outside the cloud, at which point we have a shortest path from v
to every other vertex of G. This approach is a simple, but nevertheless powerful,

example of the greedy method.

A Greedy Method for Finding Shortest Paths

Applying the greedy method to the single-source shortest-path problem in this way

results in an algorithm known as Dijkstra’s algorithm. In order to simplify our

description of Dijkstra’s algorithm, we assume in the following that the input graph

G is undirected (that is, all its edges are undirected) and simple (that is, it has no

self-loops and no parallel edges). Hence, we denote the edges of G as unordered

vertex pairs (u, z). We leave the description of Dijkstra’s algorithm so that it works

for a weighted directed graph as an exercise (R-14.2).

In Dijkstra’s algorithm, the cost function we are trying to optimize in our appli-

cation of the greedy method is also the function that we are trying to compute—the

shortest-path distance. This may at first seem like circular reasoning until we real-

ize that we can actually implement this approach by using a “bootstrapping” trick,

consisting of using an approximation to the distance function we are trying to com-

pute, which in the end will be equal to the true distance.

Edge Relaxation

Let us define a label, D[u], for each vertex u of G, which we use to approximate the

distance in G from v to u. The meaning of these labels is that D[u] will always store

the length of the best path we have found so far from v to u. Initially, D[v] = 0
and D[u] = +∞ for each u 	= v, and we define the set C, which is our “cloud” of

vertices, to initially be the empty set ∅. At each iteration of the algorithm, we select

a vertex u not in C with smallest D[u] label, and we pull u into C. In the very first

iteration we will, of course, pull v into C. Once a new vertex u is pulled into C, we

then update the label D[z] of each vertex z that is adjacent to u and is outside of

C, to reflect the fact that there may be a new and better way to get to z via u. This

update operation is known as a relaxation procedure, for it takes an old estimate

and checks whether it can be improved to get closer to its true value. (A metaphor

for why we call this a relaxation comes from a spring that is stretched out and then

14.2. Dijkstra’s Algorithm 401

“relaxed” back to its true resting shape.) In the case of Dijkstra’s algorithm, the

relaxation is performed for an edge (u, z), such that we have computed a new value

of D[u] and wish to see if there is a better value for D[z] using the edge (u, z). The

specific edge relaxation operation is as follows:

Edge Relaxation:

if D[u] + w((u, z)) < D[z] then

D[z] ← D[u] + w((u, z)).

Note that if the newly discovered path to z is no better than the old way, then we

do not change D[z].

The Details of Dijkstra’s Algorithm

We give the pseudocode for Dijkstra’s algorithm in Algorithm 14.2. Note that we

use a priority queue Q to store the vertices outside of the cloud C.

Algorithm DijkstraShortestPaths(G, v):

Input: A simple undirected weighted graph G with nonnegative edge weights,

and a distinguished vertex v of G
Output: A label, D[u], for each vertex u of G, such that D[u] is the distance

from v to u in G

D[v] ← 0
for each vertex u 	= v of G do

D[u] ← +∞
Let a priority queue, Q, contain all the vertices of G using the D labels as keys.

while Q is not empty do

// pull a new vertex u into the cloud

u ← Q.removeMin()
for each vertex z adjacent to u such that z is in Q do

// perform the relaxation procedure on edge (u, z)
if D[u] + w((u, z)) < D[z] then

D[z] ← D[u] + w((u, z))
Change the key for vertex z in Q to D[z]

return the label D[u] of each vertex u

Algorithm 14.2: Dijkstra’s algorithm for the single-source shortest path problem for

a graph G, starting from a vertex v.

We illustrate several iterations of Dijkstra’s algorithm in Figures 14.3 and 14.4.

402 Chapter 14. Shortest Paths

JFK

BOS

MIA

ORD

LAX

DFW

SFO
BWI

PVD

867
2704

187

1258

849

144
740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

•

•

•

• •

•

•

0

•

JFK

BOS

MIA

ORD

LAX

DFW

SFO
BWI

PVD

867
2704

187

1258

849

144
740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

•

•

•

•

•

184

0

946

621

(a) (b)

JFK

BOS

MIA

ORD

LAX

DFW

SFO
BWI

PVD

867
2704

187

1258

849

144
740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

•

•

1575

328

371

184

0

946

621

JFK

BOS

MIA

ORD

LAX

DFW

SFO
BWI

PVD

867
2704

187

1258

849

144
740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

•

•

1575

328

371

184

0

946

621

(c) (d)

JFK

BOS

MIA

ORD

LAX

DFW

SFO
BWI

PVD

867
2704

187

1258

849

144
740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

•

3075

1575

328

371

184

0

946

621

JFK

BOS

MIA

ORD

LAX

DFW

SFO
BWI

PVD

867
2704

187

1258

849

144
740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

•

2467

1423

328

371

184

0

946

621

(e) (f)

Figure 14.3: An execution of Dijkstra’s algorithm on a weighted graph. The start

vertex is BWI. A box next to each vertex u stores the label D[u]. The symbol • is

used instead of +∞. The edges of the shortest-path tree are drawn as thick arrows,

and for each vertex u outside the “cloud” we show the current best edge for pulling

in u with a solid line. (Continued in Figure 14.4.)

14.2. Dijkstra’s Algorithm 403

JFK

BOS

MIA

ORD

LAX

DFW

SFO
BWI

PVD

867
2704

187

1258

849

144
740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

3288

2467

1423

328

371

184

0

946

621

JFK

BOS

MIA

ORD

LAX

DFW

SFO
BWI

PVD

867
2704

187

1258

849

144
740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

2658

2467

1423

328

371

184

0

946

621

(g) (h)

JFK

BOS

MIA

ORD

LAX

DFW

SFO
BWI

PVD

867
2704

187

1258

849

144
740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

2658

2467

1423

328

371

184

0

946

621

JFK

BOS

MIA

ORD

LAX

DFW

SFO
BWI

PVD

867
2704

187

1258

849

144
740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

2658

2467

1423

328

371

184

0

946

621

(i) (j)

Figure 14.4: Visualization of Dijkstra’s algorithm. (Continued from Figure 14.3.)

Why It Works

The interesting, and possibly even a little surprising, aspect of the Dijkstra algo-

rithm is that, at the moment a vertex u is pulled into C, its label D[u] stores the

correct length of a shortest path from v to u. Thus, when the algorithm terminates,

it will have computed the shortest-path distance from v to every vertex of G. That

is, it will have solved the single-source shortest path problem.

It is probably not immediately clear why Dijkstra’s algorithm correctly finds

the shortest path from the start vertex v to each other vertex u in the graph. Why

is it that the distance from v to u is equal to the value of the label D[u] at the time

vertex u is pulled into the cloud C (which is also the time u is removed from the

priority queue Q)? The answer to this question depends on there being no negative-

weight edges in the graph, for it allows the greedy method to work correctly, as we

show in the lemma that follows.

404 Chapter 14. Shortest Paths

Lemma 14.1: In Dijkstra’s algorithm, whenever a vertex u is pulled into the
cloud, the label D[u] is equal to d(v, u), the length of a shortest path from v to u.

Proof: Suppose that D[t] > d(v, t) for some vertex t in V , and let u be the first

vertex the algorithm pulled into the cloud C (that is, removed from Q), such that

D[u] > d(v, u). There is a shortest path P from v to u (for otherwise d(v, u) =
+∞ = D[u]). Therefore, let us consider the moment when u is pulled into C,

and let z be the first vertex of P (when going from v to u) that is not in C at this

moment. Let y be the predecessor of z in path P (note that we could have y = v).

(See Figure 14.5.) We know, by our choice of z, that y is already in C at this point.

Moreover, D[y] = d(v, y), since u is the first incorrect vertex. When y was pulled

into C, we tested (and possibly updated) D[z] so that we had at that point

D[z] ≤ D[y] + w((y, z)) = d(v, y) + w((y, z)).

But since z is the next vertex on the shortest path from v to u, this implies that

D[z] = d(v, z).

But we are now at the moment when we are picking u, not z, to join C; hence,

D[u] ≤ D[z].

It should be clear that a subpath of a shortest path is itself a shortest path. Hence,

since z is on the shortest path from v to u,

d(v, z) + d(z, u) = d(v, u).

Moreover, d(z, u) ≥ 0 because there are no negative-weight edges. Therefore,

D[u] ≤ D[z] = d(v, z) ≤ d(v, z) + d(z, u) = d(v, u).

But this contradicts the definition of u; hence, there can be no such vertex u.

C

v

u

z

y
P

D[y] = d(v,y)

D[z] = d(v,z)

the irst “wrong” vertex

u picked next

D[u] > d(v,u)

so D[u] < D[z]

Figure 14.5: A schematic illustration for the justification of Lemma 14.1.

14.2. Dijkstra’s Algorithm 405

The Running Time of Dijkstra’s Algorithm

Let us analyze the time complexity of Dijkstra’s algorithm, where we use n and

m to denote the number of vertices and edges of the input graph G, respectively.

We assume that the edge weights can be added and compared in constant time.

Because of the high level of the description we gave for Dijkstra’s algorithm in

Algorithm 14.2, analyzing its running time requires that we give more details on its

implementation. Specifically, we should indicate the data structures used and how

they are implemented.

Let us first assume that we are representing the graph G using an adjacency

list structure. This data structure allows us to step through the vertices adjacent to

u during the relaxation step in time proportional to their number. It still does not

settle all the details for the algorithm, however, for we must say more about how to

implement the other main data structure in the algorithm—the priority queue Q.

An efficient implementation of the priority queue Q uses a heap (see Sec-

tion 5.3). This allows us to extract the vertex u with smallest D label, by calling

the removeMin method, in O(log n) time. As noted in the pseudocode, each time

we update a D[z] label we need to update the key of z in the priority queue. If

Q is implemented as a heap, then this key update can, for example, be done by

first removing and then inserting z with its new key. The standard heap data struc-

ture doesn’t normally support a removal method for arbitrary elements, however.

Instead, it supports insertion of items given as key-value pairs and the repeated

removal of an item with smallest key. We can extend our priority queue imple-

mentation to support a removal operation, however, by using the locator concept

described in Section 5.5. In Dijkstra’s algorithm, this approach is roughly equiv-

alent to our maintaining a pointer with each vertex, v, that supports constant-time

access to the node in our heap that is holding v. Given a pointer to this node, we

can remove v or update its key and perform the associated up-heap or down-heap

bubbling as needed in O(log n) time.

Assuming this implementation of Q, implies that Dijkstra’s algorithm runs in

O((n + m) log n) time. Referring back to Algorithm 14.2, the details of this anal-

ysis are as follows:

• Inserting all the vertices in Q with their initial key value can be done in

O(n log n) time by repeated insertions, or in O(n) time using bottom-up

heap construction (see Section 5.4).

• At each iteration of the while loop, we spend O(log n) time to remove vertex

u from Q, and O(deg(v) log n) time to perform the relaxation procedure on

the edges incident on u.

• The overall running time of the while loop is
∑

v∈G

(1 + deg(v)) log n,

which is O((n + m) log n) by Theorem 13.6.

406 Chapter 14. Shortest Paths

Thus, we can implement Dijkstra’s algorithm in O(m log n) time, but this is

not the only way to implement this algorithm. There is an alternative implemen-

tation of Dijkstra’s algorithm based on implementing the priority queue, Q, using

an unsorted doubly linked list. This, of course, requires that we spend O(n) time

to remove the item with minimum key, but it allows for very fast key updates, pro-

vided Q supports use of the locator pattern or something like it. That is, we would

need to support constant-time access from any vertex, v, to the node in the linked

list for Q that is holding v. For example, maintaining a pointer for each vertex, v,

to the node in Q that is holding v would suffice for this purpose.

This approach would allow us to implement each key update done in a relax-

ation step in O(1) time, since we could simply change the key value once we locate

the item in Q to update. Hence, this implementation results in a running time that

is O(n2 + m), which can be simplified to O(n2), since G is simple.

Thus, we have at least two choices for implementing the priority queue in

Dijkstra’s algorithm. The two implementations we explored above are a locator-

based heap implementation, which yields an algorithm with an O(m log n) run-

ning time, and a locator-based unsorted sequence implementation, which yields an

O(n2)-time algorithm. (In addition, we explore yet another way of implementing

Dijkstra’s algorithm in Exercise C-14.3, which avoids the use of locators.) Thus,

we have the following.

Theorem 14.2: Given a simple weighted graph G with n vertices and m edges,
such that the weight of each edge is nonnegative, and a vertex v of G, Dijkstra’s
algorithm computes the distance from v to all other vertices of G in O(m log n)
time, or, alternatively, in O(n2) time.

In Exercise R-14.3, we explore how to modify Dijkstra’s algorithm to output a

tree T rooted at v, such that the path in T from v to a vertex u is a shortest path

in G from v to u. In addition, extending Dijkstra’s algorithm for directed graphs

is fairly straightforward. We cannot extend Dijkstra’s algorithm to work on graphs

with negative-weight edges, however, as Figure 14.6 illustrates.

C

120

- 8

124

10 D[z]=130

z

y

x

v

Figure 14.6: An illustration of why Dijkstra’s algorithm fails for graphs with

negative-weight edges. Bringing z into C and performing edge relaxations will

invalidate the previously computed shortest-path distance (124) to x.

14.3. The Bellman-Ford Algorithm 407

14.3 The Bellman-Ford Algorithm

There is another algorithm, which is due to Bellman and Ford, that can find shortest

paths in graphs that have negative-weight edges. We must, in this case, insist that

the graph be directed, for otherwise any negative-weight undirected edge would

immediately imply a negative-weight cycle, where we traverse this edge back and

forth in each direction. We cannot allow such edges, since a negative cycle invali-

dates the notion of distance based on edge weights.

Let �G be a weighted directed graph, possibly with some negative-weight edges.

The Bellman-Ford algorithm for computing the shortest-path distance from some

vertex v in �G to every other vertex in �G is very simple. It shares the notion of

edge relaxation from Dijkstra’s algorithm, but does not use it in conjunction with

the greedy method (which would not work in this context; see Exercise C-14.2).

That is, as in Dijkstra’s algorithm, the Bellman-Ford algorithm uses a label D[u]
that is always an upper bound on the distance d(v, u) from v to u, and is iteratively

“relaxed” until it exactly equals this distance.

The Bellman-Ford method is shown in Algorithm 14.7. It performs n−1 times

a relaxation of every edge in the digraph. We illustrate an execution of the Bellman-

Ford algorithm in Figure 14.8.

Algorithm BellmanFordShortestPaths(�G, v):

Input: A weighted directed graph �G with n vertices, and a vertex v of �G
Output: A label D[u], for each vertex u of �G, such that D[u] is the distance

from v to u in �G, or an indication that �G has a negative-weight cycle

D[v] ← 0

for each vertex u 	= v of �G do

D[u] ← +∞
for i ← 1 to n − 1 do

for each (directed) edge (u, z) outgoing from u do

// Perform the relaxation operation on (u, z)
if D[u] + w((u, z)) < D[z] then

D[z] ← D[u] + w((u, z))
if there are no edges left with potential relaxation operations then

return the label D[u] of each vertex u
else

return “ �G contains a negative-weight cycle”

Algorithm 14.7: The Bellman-Ford single-source shortest-path algorithm.

Lemma 14.3: If, at the end of the execution of Algorithm 14.7, there is an edge
(u, z) such that D[u] + w((u, z)) < D[z], then the input digraph, �G, contains a

negative-weight cycle. Otherwise, D[u] = d(v, u) for each vertex u in �G.

408 Chapter 14. Shortest Paths

JFK

MIA

ORD

LAX
DFW

BWI

-8

-10

10

20

-15

-25

30

3

20

-10

12

•

0

•

•

•

•

•

JFK

MIA

ORD

LAX

DFW

BWI

-8

-10

10

20

-15

-25

30

3

20

-10

12

0

20

•
10

•

•

•

(a) (b)

•

•

•

JFK

MIA

ORD

LAX

DFW

BWI

-8

-10

10

20

-15

-25

30

3

20

-10

12

0

20

10
5

-5

2

50

50

2

-5

JFK

MIA

ORD

LAX

DFW

BWI

-8

-10

10

20

-15

-25

30

3

20

-10

12

0

20

5

-8

-3

5

(c) (d)

5

-8

JFK

MIA

ORD

LAX

DFW

BWI

-8

-10

10

20

-15

-25

30

3

20

-10

12

0

20

5

-13

-3

4

4

JFK

MIA

ORD

LAX

DFW

BWI

-8

-10

10

20

-15

-25

30

3

20

-10

12

0

20

5

-13

-3

-1

(e) (f)

Figure 14.8: An illustration of an application of the Bellman-Ford algorithm. The start

vertex is BWI. A box next to each vertex u stores the label D[u], with “shadows” showing

values revised during relaxations; the thick edges are causing such relaxations.

14.3. The Bellman-Ford Algorithm 409

Proof: For the sake of this proof, let us introduce a new notion of distance in

a digraph. Specifically, let di(v, u) denote the length of a path from v to u that is

shortest among all paths from v to u that contain at most i edges. We call di(v, u)
the i-edge distance from v to u. We claim that after iteration i of the main for-

loop in the Bellman-Ford algorithm D[u] = di(v, u) for each vertex in �G. This is

certainly true before we even begin the first iteration, for D[v] = 0 = d0(v, v) and,

for u 	= v, D[u] = +∞ = d0(v, u). Suppose this claim is true before iteration i
(we will now show that if this is the case, then this claim will be true after iteration

i as well). In iteration i, we perform a relaxation step for every edge in the digraph.

The i-edge distance di(v, u), from v to a vertex u, is determined in one of two

ways. Either di(v, u) = di−1(v, u) or di(v, u) = di−1(v, z) + w((z, u)) for some

vertex z in �G. Because we do a relaxation for every edge of �G in iteration i, if it is

the former case, then after iteration i we have D[u] = di−1(v, u) = di(v, u), and

if it is the latter case, then after iteration i we have D[u] = D[z] + w((z, u)) =
di−1(v, z) + w((z, u)) = di(v, u). Thus, if D[u] = di−1(v, u) for each vertex u
before iteration i, then D[u] = di(v, u) for each vertex u after iteration i.

Therefore, after n − 1 iterations, D[u] = dn−1(v, u) for each vertex u in �G.

Now observe that if there is still an edge in �G that can be relaxed, then there is

some vertex u in �G, such that the n-edge distance from v to u is less than the

(n − 1)-edge distance from v to u, that is, dn(v, u) < dn−1(v, u). But there are

only n vertices in �G; hence, if there is a shortest n-edge path from v to u, it must

repeat some vertex z in �G twice. That is, it must contain a cycle. Moreover, since

the distance from a vertex to itself using zero edges is 0 (that is, d0(z, z) = 0),

this cycle must be a negative-weight cycle. Thus, if there is an edge in �G that

can still be relaxed after running the Bellman-Ford algorithm, then �G contains a

negative-weight cycle. If, on the other hand, there is no edge in �G that can still

be relaxed after running the Bellman-Ford algorithm, then �G does not contain a

negative-weight cycle. Moreover, in this case, every shortest path between two

vertices will have at most n − 1 edges; hence, for each vertex u in �G, D[u] =
dn−1(v, u) = d(v, u).

Thus, the Bellman-Ford algorithm is correct and even gives us a way of telling

when a digraph contains a negative-weight cycle. The running time of the Bellman-

Ford algorithm is easy to analyze. We perform the main for-loop n − 1 times, and

each such loop involves spending O(1) time for each edge in �G. Therefore, the

running time for this algorithm is O(nm). We summarize as follows:

Theorem 14.4: Given a weighted directed graph �G with n vertices and m edges,
and a vertex v of �G, the Bellman-Ford algorithm computes the distance from v to
all other vertices of G or determines that �G contains a negative-weight cycle in
O(nm) time.

410 Chapter 14. Shortest Paths

14.4 Shortest Paths in Directed Acyclic Graphs

As mentioned above, both Dijkstra’s algorithm and the Bellman-Ford algorithm

work for directed graphs. We can solve the single-source shortest paths problem

faster than these algorithms can, however, if the digraph has no directed cycles, that

is, it is a weighted directed acyclic graph (DAG).

Recall from Section 13.4.4 that a topological ordering of a DAG �G is a listing

of its vertices (v1, v2, . . . , vn), such that if (vi, vj) is an edge in �G, then i < j.

Also, recall that we can use the depth-first search algorithm to compute a topologi-

cal ordering of the n vertices in an m-edge DAG �G in O(n+m) time. Interestingly,

given a topological ordering of such a weighted DAG �G, we can compute all short-

est paths from a given vertex v in O(n + m) time.

The method, which is given in Algorithm 14.9, involves visiting the vertices

of �G according to the topological ordering, relaxing the outgoing edges with each

visit.

Algorithm DAGShortestPaths(�G, s):

Input: A weighted directed acyclic graph (DAG) �G with n vertices and m
edges, and a distinguished vertex s in �G

Output: A label D[u], for each vertex u of �G, such that D[u] is the distance

from v to u in �G

Compute a topological ordering (v1, v2, . . . , vn) for �G
D[s] ← 0

for each vertex u 	= s of �G do

D[u] ← +∞
for i ← 1 to n − 1 do

// Relax each outgoing edge from vi

for each edge (vi, u) outgoing from vi do

if D[vi] + w((vi, u)) < D[u] then

D[u] ← D[vi] + w((vi, u))
Output the distance labels D as the distances from s.

Algorithm 14.9: Shortest-path algorithm for a directed acyclic graph.

The running time of the shortest-path algorithm for a DAG is easy to analyze.

Assuming the digraph is represented using an adjacency list, we can process each

vertex in constant time plus an additional time proportional to the number of its

outgoing edges. In addition, we have already observed that computing the topolog-

ical ordering of the vertices in �G can be done in O(n + m) time. Thus, the entire

algorithm runs in O(n + m) time. We illustrate this algorithm in Figure 14.10.

14.4. Shortest Paths in Directed Acyclic Graphs 411

0

(a)

(f)(e)

(d)(c)

(b)

22

6
4

- 2

+ 8

1

5

4

3

2
12

14 - 3

4

6

5

10

+ 8

+ 8

+ 8

+ 8

6
4

- 2

+ 8

1

5

4

3

2
12

14 - 3

4

6

5

10

+ 8

+ 8

12

14

6
4

- 2

+ 8

1

5

4

3

2
12

14 - 3

4

6

5

10

12

14

9

1

5

4

3

2
12

14 - 3

4

6

5

10

12

14

9

18

6
4

- 2

+ 8

1

5

4

3

2
12

14 - 3

4

6

5

10

12

14

9

14

12

6
4

- 2

13

6
4

- 2

1

5

4

3

2
12

14 - 3

4

6

5

10

12

14

9

14

0

0 0

00

Figure 14.10: An illustration of the shortest-path algorithm for a DAG.

Theorem 14.5: DAGShortestPaths computes the distance from a start vertex s
to each other vertex in a directed n-vertex graph �G with m edges in O(n+m) time.

Proof: Suppose, for the sake of a contradiction, that vi is the first vertex in the

topological ordering such that D[vi] is not the distance from s to vi. First, note

that D[vi] < +∞, for the initial D value for each vertex other than s is +∞
and the value of a D label is only ever lowered if a path from s is discovered.

Thus, if D[vj] = +∞, then vj is unreachable from s. Therefore, vi is reachable

from s, so there is a shortest path from s to vi. Let vk be the penultimate vertex

on a shortest path from s to vi. Since the vertices are numbered according to a

topological ordering, we have that k < i. Thus, D[vk] is correct (we may possibly

have vk = s). But when vk is processed, we relax each outgoing edge from vk,

including the edge on the shortest path from vk to vi. Thus, D[vi] is assigned the

distance from s to vi. But this contradicts the definition of vi; hence, no such vertex

vi can exist.

412 Chapter 14. Shortest Paths

14.5 All-Pairs Shortest Paths

Suppose we wish to compute the shortest-path distance between every pair of ver-

tices in a directed graph �G with n vertices and m edges. Of course, if �G has no

negative-weight edges, then we could run Dijkstra’s algorithm from each vertex in
�G in turn. This approach would take O(n(n + m) log n) time, assuming �G is rep-

resented using an adjacency list structure. In the worst case, this bound could be as

large as O(n3 log n). Likewise, if �G contains no negative-weight cycles, then we

could run the Bellman-Ford algorithm starting from each vertex in �G in turn. This

approach would run in O(n2m) time, which, in the worst case, could be as large

as O(n4). In this section, we consider algorithms for solving the all-pairs shortest

path problem in O(n3) time, even if the digraph contains negative-weight edges

(but not negative-weight cycles).

14.5.1 A Dynamic Programming Shortest-Path Algorithm

The first all-pairs shortest-path algorithm we discuss is a variation on an algorithm

we have given earlier in this book, namely, the Floyd-Warshall algorithm for com-

puting the transitive closure of a directed graph (Algorithm 13.13).

Let �G be a given weighted directed graph. We number the vertices of �G arbitrar-

ily as (v1, v2, . . . , vn). As in any dynamic programming algorithm (Chapter 12),

the key construct in the algorithm is to define a parametrized cost function that is

easy to compute and also allows us to ultimately compute a final solution. In this

case, we use the cost function, Dk
i,j , which is defined as the distance from vi to vj

using only intermediate vertices in the set {v1, v2, . . . , vk}. Initially,

D0
i,j =

⎧

⎨

⎩

0 if i = j

w((vi, vj)) if (vi, vj) is an edge in �G
+∞ otherwise.

Given this parametrized cost function Dk
i,j , and its initial value D0

i,j , we can then

easily define the value for an arbitrary k > 0 as

Dk
i,j = min{Dk−1

i,j , Dk−1

i,k + Dk−1

k,j }.

In other words, the cost for going from vi to vj using vertices numbered 1 through

k is equal to the shorter of two possible paths. The first path is simply the shortest

path from vi to vj using vertices numbered 1 through k − 1. The second path is

the sum of the costs of the shortest path from vi to vk using vertices numbered

1 through k − 1 and the shortest path from vk to vj using vertices numbered 1
through k − 1. Moreover, there is no other shorter path from vi to vj using vertices

of {v1, v2, . . . , vk} than these two. If there was such a shorter path and it excluded

vk, then it would violate the definition of Dk−1

i,j , and if there was such a shorter

14.5. All-Pairs Shortest Paths 413

Algorithm AllPairsShortestPaths(�G):

Input: A simple weighted directed graph �G without negative-weight cycles

Output: A numbering v1, v2, . . . , vn of the vertices of �G and a matrix D, such

that D[i, j] is the distance from vi to vj in �G

let v1, v2, . . . , vn be an arbitrary numbering of the vertices of �G
for i ← 1 to n do

for j ← 1 to n do

if i = j then

D0[i, i] ← 0

if (vi, vj) is an edge in �G then

D0[i, j] ← w((vi, vj))
else

D0[i, j] ← +∞
for k ← 1 to n do

for i ← 1 to n do

for j ← 1 to n do

Dk[i, j] ← min{Dk−1[i, j], Dk−1[i, k] + Dk−1[k, j]}
return matrix Dn

Algorithm 14.11: A dynamic programming algorithm to compute all-pairs shortest-

path distances in a digraph without negative cycles.

path and it included vk, then it would violate the definition of Dk−1

i,k or Dk−1

k,j . In

fact, note that this argument still holds even if there are negative cost edges in �G,

just so long as there are no negative cost cycles. In Algorithm 14.11, we show how

this cost-function definition allows us to build an efficient solution to the all-pairs

shortest path problem. The running time for this dynamic programming algorithm

is clearly O(n3), which implies the following.

Theorem 14.6: Given a simple weighted directed graph �G with n vertices and
no negative-weight cycles, Algorithm 14.11 (AllPairsShortestPaths) computes
the shortest-path distances between each pair of vertices of �G in O(n3) time.

14.5.2 Computing Shortest Paths via Matrix Multiplication

We can view the problem of computing the shortest-path distances for all pairs of

vertices in a directed graph �G as a matrix problem. In this subsection, we describe

how to solve the all-pairs shortest-path problem in O(n3) time using this approach.

We first describe how to use this approach to solve the all-pairs problem in O(n4)
time, and then we show how this can be improved to O(n3) time by studying the

problem in more depth. This matrix-multiplication approach to shortest paths is

especially useful in contexts where we represent graphs using the adjacency matrix

data structure.

414 Chapter 14. Shortest Paths

The Weighted Adjacency Matrix Representation

Let us number the vertices of �G as (v0, v1, . . . , vn−1), returning to the convention

of numbering the vertices starting at index 0. Given this numbering of the vertices

of �G, there is a natural weighted view of the adjacency matrix representation for a

graph, where we define A[i, j] as follows:

A[i, j] =

⎧

⎨

⎩

0 if i = j

w((vi, vj)) if (vi, vj) is an edge in �G
+∞ otherwise.

(Note that this is the same definition used for the cost function D0
i,j from the previ-

ous subsection.)

Shortest Paths and Matrix Multiplication

In other words, A[i, j] stores the shortest-path distance from vi to vj using one or

fewer edges in the path. Let us therefore use the matrix A to define another matrix

A2, such that A2[i, j] stores the shortest-path distance from vi to vj using at most

two edges. A path with at most two edges is either empty (a zero-edge path) or

it adds an extra edge to a zero-edge or one-edge path. Therefore, we can define

A2[i, j] as

A2[i, j] = min
l=0,1,...,n−1

{A[i, l] + A[l, j]}.

Thus, given A, we can compute the matrix A2 in O(n3) time, by using an algorithm

very similar to the standard matrix multiplication algorithm.

In fact, we can view this computation as a matrix multiplication in which we

have simply redefined what the operators “plus” and “times” mean in the matrix

multiplication algorithm (the programming language C++ specifically allows for

such operator overloading). If we let “plus” be redefined to mean “min” and we

let “times” be redefined to mean “+,” then we can write A2[i, j] as a true matrix

multiplication:

A2[i, j] =
∑

l=0,1,...,n−1

A[i, l] · A[l, j].

Indeed, this matrix-multiplication viewpoint is the reason why we have written this

matrix as “A2,” for it is the square of the matrix A.

Let us continue this approach to define a matrix Ak, so that Ak[i, j] is the

shortest-path distance from vi to vj using at most k edges. Since a path with at

most k edges is equivalent to a path with at most k − 1 edges plus possibly one

additional edge, we can define Ak so that

Ak[i, j] =
∑

l=0,1,...,n−1

Ak−1[i, l] · A[l, j],

with the operators redefined so that “+” stands for “min” and “·” stands for “+.”

14.5. All-Pairs Shortest Paths 415

The crucial observation is that if �G contains no negative-weight cycles, then

An−1 stores the shortest-path distance between each pair of vertices in �G. This

observation follows from the fact that any well-defined shortest path contains at

most n− 1 edges. If a path has more than n− 1 edges, it must repeat some vertex;

hence, it must contain a cycle. But a shortest path will never contain a cycle (unless

there is a negative-weight cycle in �G). Thus, to solve the all-pairs shortest-path

problem, all we need to do is to multiply A times itself n − 1 times. Since each

such multiplication can be done in O(n3) time, this approach immediately gives us

the following.

Theorem 14.7: Given a weighted directed n-vertex graph �G containing no
negative-weight cycles, and the weighted adjacency matrix A for �G, the all-pairs
shortest path problem for �G can be solved by computing An−1, which can be per-
formed in O(n4) time.

In Section 24.2.1, we discuss an exponentiation algorithm for numbers, which

can be applied in the present context of matrix multiplication to compute An−1 in

O(n3 log n) time. We can actually compute An−1 in O(n3) time, however, by tak-

ing advantage of additional structure present in the all-pairs shortest-path problem.

Matrix Closure

As observed above, if �G contains no negative-weight cycles, then An−1 encodes all

the shortest-path distances between pairs of vertices in �G. A well-defined shortest

path can contain no cycles; hence, a shortest path restricted to contain at most n−1
edges must be a true shortest path. Likewise, a shortest path containing at most n
edges is a true shortest path, as is a shortest path containing at most n + 1 edges,

n + 2 edges, and so on. Therefore, if �G contains no negative-weight cycles, then

An−1 = An = An+1 = An+2 = · · · .

The closure of a matrix A is defined as

A∗ =

∞
∑

l=0

Al,

if such a matrix exists. If A is a weighted adjacency matrix, then A∗[i, j] is the sum

of all possible paths from vi to vj . In our case, A is the weighted adjacency matrix

for a directed graph �G and we have redefined “+” as “min.” Thus, we can write

A∗ = min
i=0,...,∞

{Ai}.

Moreover, since we are computing shortest-path distances, the entries in Ai+1 are

never larger than the entries in Ai. Therefore, for the weighted adjacency matrix of

an n-vertex digraph �G with no negative-weight cycles,

A∗ = An−1 = An = An+1 = An+2 = · · · .

That is, A∗[i, j] stores the length of the shortest path from vi to vj .

416 Chapter 14. Shortest Paths

Computing the Closure of a Weighted Adjacency Matrix

We can compute the closure A∗ by divide-and-conquer in O(n3) time. Without loss

of generality, we may assume that n is a power of two (if not, then pad the digraph
�G with extra vertices that have no incoming or outgoing edges). Let us divide

the set V of vertices in �G into two equal-sized sets V1 = {v0, . . . , vn/2−1} and

V2 = {vn/2, . . . , vn−1}. Given this division, we can likewise divide the adjacency

matrix A into four blocks, B, C, D, and E, each with n/2 rows and columns,

defined as follows:

• B: weights of edges from V1 to V1

• C: weights of edges from V1 to V2

• D: weights of edges from V2 to V1

• E: weights of edges from V2 to V2.

That is,

A =

(

B C
D E

)

.

We illustrate these four sets of edges in Figure 14.12.

Likewise, we can partition A∗ into four blocks W , X , Y , and Z, as well, which

are similarly defined.

• W : weights of shortest paths from V1 to V1

• X: weights of shortest paths from V1 to V2

• Y : weights of shortest paths from V2 to V1

• Z: weights of shortest paths from V2 to V2.

That is,

A∗ =

(

W X
Y Z

)

.

V
1

V
2

B

D

C

E

Figure 14.12: An illustration of the four sets of edges used to partition the adjacency

matrix A in the divide-and-conquer algorithm for computing A∗.

14.5. All-Pairs Shortest Paths 417

Submatrix Equations

By these definitions and those above, we can derive simple equations to define W ,

X , Y , and Z directly from the submatrices B, C, D, and E.

• W = (B + C · E∗ · D)∗, for paths in W consist of the closure of subpaths

that either stay in V1 or jump to V2, travel in V2 for a while, and then jump

back to V1.

• X = W · C · E∗, for paths in X consist of the closure of subpaths that start

and end in V1 (with possible jumps to V2 and back), followed by a jump to

V2 and the closure of subpaths that stay in V2.

• Y = E∗ ·D ·W , for paths in Y consist of the closure of subpaths that stay in

V2, followed by a jump to V1 and the closure of subpaths that start and end

in V1 (with possible jumps to V2 and back).

• Z = E∗ + E∗ ·D ·W ·C ·E∗, for paths in Z consist of paths that stay in V2

or paths that travel in V2, jump to V1, travel in V1 for a while (with possible

jumps to V2 and back), jump back to V2, and then stay in V2.

Given these equations, it is a simple matter to then construct a recursive algo-

rithm to compute A∗. In this algorithm, we divide A into the blocks B, C, D, and

E, as described above. We then recursively compute the closure E∗. Given E∗, we

can then recursively compute the closure (B + C · E∗ · D)∗, which is W .

Note that no other recursive closure computations are then needed to compute

X , Y , and Z. Thus, after a constant number of matrix additions and multiplications,

we can compute all the blocks in A∗. This gives us the following theorem.

Theorem 14.8: Given a weighted directed n-vertex graph �G containing no
negative-weight cycles, and the weighted adjacency matrix A for �G, the all-pairs
shortest-path problem for �G can be solved by computing A∗, which can be per-
formed in O(n3) time.

Proof: We have already argued why the computation of A∗ solves the all-pairs

shortest-path problem. Consider, then, the running time of the divide-and-conquer

algorithm for computing A∗, the closure of the n × n adjacency matrix A. This

algorithm consists of two recursive calls to compute the closure of (n/2) × (n/2)
submatrices, plus a constant number of matrix additions and multiplications (using

“min” for “+” and “+” for “·”). Thus, assuming we use the straightforward O(n3)-
time matrix multiplication algorithm, we can characterize the running time, T (n),
for computing A∗ as

T (n) =

{

b if n = 1
2T (n/2) + cn3 if n > 1,

where b > 0 and c > 0 are constants. Therefore, by the Master Theorem (11.4),

we can compute A∗ in O(n3) time.

418 Chapter 14. Shortest Paths

14.6 Exercises

Reinforcement

R-14.1 Draw a simple, connected, weighted, undirected graph with 8 vertices and 16
edges, and with distinct edge weights. Identify one vertex as a “start” vertex and
illustrate a running of Dijkstra’s algorithm on this graph.

R-14.2 Show how to modify Dijkstra’s algorithm for the case when the graph is directed
and we want to compute shortest directed paths from the source vertex to all the
other vertices.

R-14.3 Show how to modify Dijkstra’s algorithm to not only output the distance from v
to each vertex in G, but also to output a tree T rooted at v, such that the path in
T from v to a vertex u is actually a shortest path in G from v to u.

R-14.4 Draw a (simple) directed weighted graph G with 10 vertices and 18 edges, such
that G contains a minimum-weight cycle with at least 4 edges. Show that the
Bellman-Ford algorithm will find this cycle.

R-14.5 The dynamic programming algorithm of Algorithm 14.11 uses O(n3) space. De-
scribe a version of this algorithm that uses O(n2) space.

R-14.6 The dynamic programming algorithm of Algorithm 14.11 computes only
shortest-path distances, not actual paths. Describe a version of this algorithm
that outputs the set of all shortest paths between each pair of vertices in a di-
rected graph. Your algorithm should still run in O(n3) time.

R-14.7 Consider the unsorted sequence implementation of the priority queue Q used in
Dijkstra’s algorithm. In this case, why is the best-case running time of Dijkstra’s
algorithm Ω(n2) on an n-vertex graph?

Hint: Consider the size of Q each time the minimum element is extracted.

R-14.8 Describe the meaning of the graphical conventions used in Figures 14.3 and 14.4
illustrating Dijkstra’s algorithm. What do the arrows signify? How about thick
lines and dashed lines?

Creativity

C-14.1 Give an example of an n-vertex simple graph, G, that causes Dijkstra’s algorithm
to run in Ω(n2 log n) time when its implemented with a heap for the priority
queue.

C-14.2 Give an example of a weighted directed graph, �G, with negative-weight edges,
but no negative-weight cycle, such that Dijkstra’s algorithm incorrectly computes
the shortest-path distances from some start vertex v.

C-14.3 There is an alternative way of implementing Dijkstra’s algorithm that avoids use
of the locator pattern but increases the space used for the priority queue, Q, from
O(n) to O(m) for a weighted graph, G, with n vertices and m edges. The main

14.6. Exercises 419

idea of this approach is simply to insert a new key-value pair, (D[v], v), each time
the D[v] value for a vertex, v, changes, without ever removing the old key-value
pair for v. This approach still works, even with multiple copies of each vertex
being stored in Q, since the first copy of a vertex that is removed from Q is the
copy with the smallest key. Describe the other changes that would be needed
to the description of Dijsktra’s algorithm for this approach to work. Also, what
is the running time of Dijkstra’s algorithm in this approach if we implement the
priority queue, Q, with a heap?

C-14.4 Consider the following greedy strategy for finding a shortest path from vertex
start to vertex goal in a given connected graph.

1: Initialize path to start.
2: Initialize VisitedVertices to {start}.
3: If start=goal, return path and exit. Otherwise, continue.
4: Find the edge (start,v) of minimum weight such that v is adjacent to start

and v is not in VisitedVertices.
5: Add v to path.
6: Add v to VisitedVertices.
7: Set start equal to v and go to step 3.

Does this greedy strategy always find a shortest path from start to goal? Either
explain intuitively why it works, or give a counterexample.

C-14.5 Design an efficient algorithm for finding a longest directed path from a vertex s

to a vertex t of an acyclic weighted digraph �G. Specify the graph representation
used and any auxiliary data structures used. Also, analyze the time complexity
of your algorithm.

C-14.6 Suppose we are given a directed graph �G with n vertices, and let M be the n×n

adjacency matrix corresponding to �G.

a. Let the product of M with itself (M2) be defined, for 1 ≤ i, j ≤ n, as
follows:

M2(i, j) = M(i, 1) ⊙ M(1, j) ⊕ · · · ⊕ M(i, n) ⊙ M(n, j),

where “⊕” is the Boolean or operator and “⊙” is Boolean and. Given this
definition, what does M2(i, j) = 1 imply about the vertices i and j? What
if M2(i, j) = 0?

b. Suppose M4 is the product of M2 with itself. What do the entries of M4

signify? How about the entries of M5 = (M4)(M)? In general, what
information is contained in the matrix Mp?

c. Now suppose that �G is weighted and assume the following:

1: for 1 ≤ i ≤ n, M(i, i) = 0.
2: for 1 ≤ i, j ≤ n, M(i, j) = weight(i, j) if (i, j) ∈ E.
3: for 1 ≤ i, j ≤ n, M(i, j) = ∞ if (i, j) 	∈ E.

Also, let M2 be defined, for 1 ≤ i, j ≤ n, as follows:

M2(i, j) = min{M(i, 1) + M(1, j), . . . ,M(i, n) + M(n, j)}.

If M2(i, j) = k, what may we conclude about the relationship between
vertices i and j?

420 Chapter 14. Shortest Paths

C-14.7 Suppose you are given a connected weighted undirected graph, G, with n vertices
and m edges, such that the weight of each edge in G is an integer in the interval
[1, c], for a fixed constant c > 0. Show how to solve the single-source shortest-
paths problem, for any given vertex v, in G, in time O(n + m).

Hint: Think about how to exploit the fact that the distance from v to any other
vertex in G can be at most O(cn) = O(n).

C-14.8 Suppose that every shortest path from some vertex, v, in an n-vertex weighted
graph, G, to any other vertex in G has at most k < n − 1 edges. Show that it
is sufficient to run the Bellman-Ford algorithm for only k iterations, instead of
n − 1, to solve the single-source shortest-paths problem for v in G.

Applications

A-14.1 In a side-scrolling video game, a character moves through an environment from,
say, left-to-right, while encountering obstacles, attackers, and prizes. The goal
is to avoid or destroy the obstacles, defeat or avoid the attackers, and collect
as many prizes as possible while moving from a starting position to an ending
position. We can model such a game with a graph, G, where each vertex is a
game position, given as an (x, y) point in the plane, and two such vertices, v and
w, are connected by an edge, given as a straight line segment, if there is a single
movement that connects v and w. Furthermore, we can define the cost, c(e), of an
edge to be a combination of the time, health points, prizes, etc., that it costs our
character to move along the edge e (where earning a prize on this edge would be
modeled as a negative term in this cost). A path, P , in G is monotone if traversing
P involves a continuous sequence of left-to-right movements, with no right-to-
left moves. Thus, we can model an optimal solution to such a side-scrolling
computer game in terms of finding a minimum-cost monotone path in the graph,
G, that represents this game. Describe and analyze an efficient algorithm for
finding a minimum-cost monotone path in such a graph, G.

A-14.2 Suppose that CONTROL, a secret U.S. government counterintelligence agency
based in Washington, D.C., has build a communication network that links n sta-
tions spread across the world using m communication channels between pairs of
stations. Suppose further that the evil spy agency, KAOS, is able to eavesdrop
on some number, k, of these channels and that CONTROL knows the k channels
that have been compromised. Now, CONTROL has a message, M , that it wants
to send from its headquarters station, s, to one of its field stations, t. The problem
is that the message is super secret and should traverse a path that minimizes the
number of compromised edges that occur along this path. Explain how to model
this problem as a shortest-path problem, and describe and analyze an efficient
algorithm to solve it.

A-14.3 Suppose you live far from work and are trying to determine the best route to
drive from your home to your workplace. In order to solve this problem, suppose
further that you have downloaded, from a government website, a weighted graph,
G, representing the entire road network for your state. Although the edges in G
are labeled with their lengths, you are more interested in the amount of time that
it takes to traverse each edge. So you have found another website that has a

14.6. Exercises 421

function, fi,j , defined for each edge, e = (i, j), in G, such that each fi,j maps
a time of day, t, to the amount of time it takes to go from i to j along the edge,
e = (i, j), if you enter that edge at time t. Here, time is measured in minutes
and times of day are measured in terms of minutes since midnight. In addition,
we assume that you will be leaving for work in the morning and you live close
enough to your workplace so that you can get there before midnight. Moreover,
the fi,j functions are defined to satisfy the normal rules of traffic flow, so that it
is never possible to get to the end of an edge, (i, j), sooner than someone who
entered that edge before you. That is, if t1 < t2, then

fi,j(t2) + t2 − t1 > fi,j(t1).

Describe an efficient algorithm that, given G and the fi,j functions for its edges,
can determine, for any given time, t0, that you might leave your home in the
morning, the amount of time required for you to drive to work. What is the
running time of your algorithm?

A-14.4 Suppose you are given a timetable, which consists of the following:

• A set A of n airports, and for each airport a ∈ A, a minimum connecting
time c(a)

• A set F of m flights, and the following, for each flight f ∈ F :

◦ Origin airport a1(f) ∈ A
◦ Destination airport a2(f) ∈ A
◦ Departure time t1(f)
◦ Arrival time t2(f).

Describe an efficient algorithm for the flight scheduling problem. In this problem,
we are given airports a and b, and a time t, and we wish to compute a sequence of
flights that allows one to arrive at the earliest possible time in b when departing
from a at or after time t. Minimum connecting times at intermediate airports
should be observed. What is the running time of your algorithm as a function of
n and m?

A-14.5 As your reward for saving the Kingdom of Bigfunnia from the evil monster “Ex-
ponential Asymptotic,” the king has given you the opportunity to earn a big re-
ward. Behind the castle there is a maze, and along each corridor of the maze there
is a bag of gold coins. The amount of gold in each bag varies. You will be given
the opportunity to walk through the maze, picking up bags of gold. You may
enter only through the door marked “ENTER” and exit through the door marked
“EXIT.” (These are distinct doors.) While in the maze you may not retrace your
steps. Each corridor of the maze has an arrow painted on the wall. You may only
go down the corridor in the direction of the arrow. There is no way to traverse a
“loop” in the maze. You will receive a map of the maze, including the amount
of gold in and the direction of each corridor. Describe and analyze an efficient
algorithm to help you pick up the most gold in this maze while traversing a path
from the start to the finish.

A-14.6 A part of doing business internationally involves the trading of different curren-
cies, and the markets that facilitate such trades can fluctuate during a trading day
in ways that create profit opportunities. For example, at a given moment during

422 Chapter 14. Shortest Paths

a trading day, 1 U.S. dollar might be worth 0.98 Canadian dollar, 1 Canadian
dollar might be worth 0.81 euros, and 1 euro might be worth 1.32 U.S. dollars.
Sometimes, as in this example, it is possible for us to perform a cyclic sequence
of currency exchanges, all at the same time, and end up with more money than
we started with, which is an action known as currency arbitrage. For instance,
with the above exchange rates, we could perform a cyclic sequence of trades from
U.S. dollars, to Canadian dollars, to euros, and back to U.S. dollars, which could
turn $1,000,000 into $1,047,816, ignoring the commissions and other overhead
costs for performing currency exchanges (which we will indeed be ignoring in

this exercise). Suppose you are given a complete directed graph, �G, that rep-
resents the currency exchange rates that exist at a given moment in time on a

trading day. Each vertex in �G is a currency, and each directed edge, (v, w), in �G,
is labeled with an exchange rate, r(v, w), which is the amount of currency w that
would be exchanged for 1 unit of currency v. In order to profit from this infor-
mation, you need to find, as quickly as possible, a cycle, (v1, v2, . . . , vk, v1), that
maximizes the product,

r(v1, v2) · r(v2, v3) · · · · · r(vk, v1),

such that this product is strictly greater than 1. Describe and analyze an efficient
dynamic programming algorithm for finding such a cycle, if it exists.

Chapter Notes

Dijkstra [56] published his single-source shortest-path algorithm in 1959. The Bellman-
Ford algorithm is derived from separate publications of Bellman [24] and Ford [74].

Incidentally, the running time for Dijkstra’s algorithm can actually be improved to be
O(n log n + m) by implementing the queue Q with either of two more sophisticated data
structures, the “Fibonacci Heap” [76] or the “Relaxed Heap” [58].

The reader interested in further study of graph algorithms is referred to the books
by Ahuja, Magnanti, and Orlin [10], Even [68], Gibbons [81], Mehlhorn [158], and Tar-
jan [207], and the book chapter by van Leeuwen [210]. For applications of shortest paths
to social networks, see the book by Easley and Kleinberg [60].

